Please use this identifier to cite or link to this item: http://idr.iimranchi.ac.in:8080/xmlui/handle/123456789/556
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Rahul.-
dc.date.accessioned2019-07-30T10:43:41Z-
dc.date.available2019-07-30T10:43:41Z-
dc.date.issued2017-11-04-
dc.identifier.urihttp://idr.iimranchi.ac.in:8080/xmlui/handle/123456789/556-
dc.description.abstractInternet today has surrounded the users with its symbolic problem of information overload where a consumer has far more than the required choices. In the realm of e-commerce industry, recommender systems (RS) utilize the information filtering technology to proactively handle 'information overload', the ubiquitous problem in cyberspace.en_US
dc.language.isoenen_US
dc.publisherIndian Institute of Management Ranchien_US
dc.subjectE-commerceen_US
dc.subjectRecommender Systemsen_US
dc.subjectCollaborative filteringen_US
dc.subjectRecommendation Partnersen_US
dc.subjectIIM Ranchien_US
dc.titleIdentifying meaningful recommendation partners in collaborative filtering framework for improved recommendationsen_US
dc.typeThesisen_US
dc.guideBala, Pradip Kumar-
Appears in Collections:Thesis

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.