DSpace Repository

Decision-making framework for identifying regions vulnerable to transmission of COVID-19 pandemic

Show simple item record

dc.contributor.author Gupta, Rohit.
dc.contributor.author Rathore, Bhawana.
dc.contributor.author Srivastava, Abhishek.
dc.contributor.author Biswas, Baidyanath.
dc.date.accessioned 2022-11-19T10:09:43Z
dc.date.available 2022-11-19T10:09:43Z
dc.date.issued 2022-07
dc.identifier.citation Gupta, R., Rathore, B., Srivastava, A., & Biswas, B. (2022). Decision-making framework for identifying regions vulnerable to transmission of COVID-19 pandemic. Computers & Industrial Engineering, 169 (July 2022), 108207. https://doi.org/10.1016/j.cie.2022.108207 en_US
dc.identifier.issn 0360-8352
dc.identifier.uri https://doi.org/10.1016/j.cie.2022.108207
dc.identifier.uri http://idr.iimranchi.ac.in:8080/xmlui/handle/123456789/1455
dc.description.abstract At the beginning of 2020, the World Health Organization (WHO) identified an unusual coronavirus and declared the associated COVID-19 disease as a global pandemic. We proposed a novel hybrid fuzzy decision-making framework to identify and analyze these transmission factors and conduct proactive decision-making in this context. We identified thirty factors from the extant literature and classified them into six major clusters (climate, hygiene and safety, responsiveness to decision-making, social and demographic, economic, and psychological) with the help of domain experts. We chose the most relevant twenty-five factors using the Fuzzy Delphi Method (FDM) screening from the initial thirty. We computed the weights of those clusters and their constituting factors and ranked them based on their criticality, applying the Fuzzy Analytic Hierarchy Process (FAHP). We found that the top five factors were global travel, delay in travel restriction, close contact, social cohesiveness, and asymptomatic. To evaluate our framework, we chose ten different geographically located cities and analyzed their exposure to COVID-19 pandemic by ranking them based on their vulnerability of transmission using Fuzzy Technique for Order of Preference by Similarity To Ideal Solution (FTOPSIS). Our study contributes to the disciplines of decision analytics and healthcare risk management during a pandemic through these novel findings. Policymakers and healthcare officials will benefit from our study by formulating and improving existing preventive measures to mitigate future global pandemics. Finally, we performed a sequence of sensitivity analyses to check for the robustness and generalizability of our proposed hybrid decision-making framework. en_US
dc.language.iso en en_US
dc.publisher Computers & Industrial Engineering en_US
dc.subject COVID-19 en_US
dc.subject Epidemic transmission en_US
dc.subject Fuzzy decision framework en_US
dc.subject Fuzzy delphi en_US
dc.subject Fuzzy A.H.P. en_US
dc.subject Fuzzy TOPSIS en_US
dc.subject IIM Ranchi en_US
dc.title Decision-making framework for identifying regions vulnerable to transmission of COVID-19 pandemic en_US
dc.type Article en_US
dc.volume 169 en_US
dc.issue July 2022 en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record