Abstract:
In Consumer Review Analysis (CRA), identification of the context of reviews holds paramount importance. In this purview, it is the responsibility of all businesses to suffice their underlying sectors with a structured and classified list of consumer feedback, available on various online platforms. However, generally, reviews and feedbacks are available in a very unorganized manner and need to be tagged and distributed properly to appropriate sectors. To address the problem, we propose a comprehensive model, employing sequential Clustering, Sentiment prediction and subsequent ranking of reviews. To validate the proposed model, data from a Samsung smartphone manufacturing firm was used. The robustness and stability of our model have been examined through different performance indices-Silhouette Index (SI), Davies-Bouldin Index (DBI) and Calinski Harabasz Score (CHS) Score. Our analysis shows a distinct categorization of reviews based on their contexts with minimal noise in the classification measures. Our custom declared coefficient, Relevant Voting Score (RVS) has been found to rank the reviews in an accurate priority list thereby helping the sectors to contemplate only the most important customer feedback.